Home
Class 12
MATHS
" The curve "g(x)=int x^(27)(1+x+x^(2))^...

" The curve "g(x)=int x^(27)(1+x+x^(2))^(2)(6x^(2)+5x+4)dx" is passing through origin.Then "

Promotional Banner

Similar Questions

Explore conceptually related problems

A curve g(x)=int x^(27)(1+x+x^(2))^(6)(6x^(2)+5x+4)dx is passing through origin.Then g(1)=(3^(7))/(7) (b) g(1)=(2)/(7)g(-1)=(1)/(7)(d)g(-1)=(3^(7))/(14)

A curve g(x)=intx^(27)(1+x+x^2)^6(6x^2+5x+4)dx is passing through origin. Then (a) g(1)=(3^7)/7 (b) g(1)=(2^7)/7 g(-1)=1/7 (d) g(-1)=(3^7)/(14)

A curve g(x)=intx^(27)(1+x+x^2)^6(6x^2+5x+4)dx is passing through origin. Then (a) g(1)=(3^7)/7 (b) g(1)=(2^7)/7 (c) g(-1)=1/7 (d) g(-1)=(3^7)/(14)

A curve g(x)=intx^(27)(1+x+x^2)^6(6x^2+5x+4)dx is passing through origin. Then (a) g(1)=(3^7)/7 (b) g(1)=(2^7)/7 (c) g(-1)=1/7 (d) g(-1)=(3^7)/(14)

int(x^(2))/(x^(2)-5x+6)dx=

int (6x^(3) + 5x^(2)-7)/(3x^(2)-2x-7)dx

int(x^(3)-6x^(2)+10x-2)/(x^(2)-5x+6)dx=

4) int(x^(2)+1)/(x^(2)-5x+6)dx

int(1)/(6+5x-6x^(2))dx

int_(2)^(3)(1)/(x^(2)+5x+6)dx =