Home
Class 9
MATHS
(1+sqrt(2))/(3-2sqrt(2))...

(1+sqrt(2))/(3-2sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

1+(sqrt(2)-1)/(2sqrt((2)))+(3-2sqrt(2))/12+(5sqrt(2))/24sqrt(2)...

Find the 5th term of the progression 1,((sqrt(2)-1))/(2sqrt(3)),((3-2sqrt(2))/(12)),((5sqrt(2)-7)/(24sqrt(3)))

(1)/(sqrt(2)+sqrt(3))-(sqrt(3)+1)/(2+sqrt(3))+(sqrt(2)+1)/(2+2sqrt(2))

Simplify P=1/(2sqrt(1)+sqrt(2))+1/(3sqrt(2)+2sqrt(3))+....+1/(100sqrt99+99sqrt100

Find the 5th term of the progression 1,((sqrt(2)-1))/(2sqrt(3)),\ ((3-2sqrt(2))/(12)),\ ((5sqrt(2)-7)/(24sqrt(3))),\ ddot

Find the angles of the triangle whose sides are (sqrt(3)+1)/(2sqrt(2)), (sqrt(3)-1)/(2sqrt(2)) and sqrt(3)/2 .

If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)] and P=S ("adj.A") S^(T) , then find matrix S^(T) P^(10) S .

If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)] and P=S ("adj.A") S^(T) , then find matrix S^(T) P^(10) S .

If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)] and P=S ("adj.A") S^(T) , then find matrix S^(T) P^(10) S .

If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)] and P=S ("adj.A") S^(T) , then find matrix S^(T) P^(10) S .