Home
Class 8
MATHS
" If "L:M=3:5" and "M:N=2:3," then "N:L=...

" If "L:M=3:5" and "M:N=2:3," then "N:L=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If L= {1, 2, 3, 4}, M= {3, 4, 5, 6} and N= {1, 3, 5}, then verify that L - (M cup N)= (L - M) cap (L - N) .

If L = {1,2,3,4}, M = {3,4,5,6} and N = {1,3,5} , then verify that L - (M uu N) = (L-M) nn (L-N) .

If L = {1,2,3,4}, M = {3,4,5,6} and N = {1,3,5} , then verify that L - (M uu N) = (L-M) nn (L-N) .

Given L={1,2,3,4}, M={3,4,5,6} and N={1,3,5} Verify that L-(McupN)=(L-M)cap(L-N) .

If L+M+N=0 and L,M,N are rationals the roots of the equation (M+N-L)x^(2)+(N+L-M)x+(L+M-N)=0 are

If L, M and N are natural number, then value of LM=M+N= ? (A) L+N=8+M (B) M^(2)=(N^(2))/(L+1) (C) M=L+2

Given L, = {1,2, 3,4},M= {3,4, 5, 6} and N= {1,3,5} Find L-(M⋃N).

ABCD is a square of length a, a in N , a > 1. Let L_1, L_2 , L_3... be points on BC such that BL_1 = L_1 L_2 = L_2 L_3 = .... 1 and M_1,M_2 , M_3,.... be points on CD such that CM_1 = M_1M_2= M_2 M_3=... = 1 . Then sum_(n = 1)^(a-1) ((AL_n)^2 + (L_n M_n)^2) is equal to :

ABCD is a square of length a, a in N , a > 1. Let L_1, L_2 , L_3... be points on BC such that BL_1 = L_1 L_2 = L_2 L_3 = .... 1 and M_1,M_2 , M_3,.... be points on CD such that CM_1 = M_1M_2= M_2 M_3=... = 1 . Then sum_(n = 1)^(a-1) ((AL_n)^2 + (L_n M_n)^2) is equal to :

ABCD is a square of length a, a in N , a > 1. Let L_1, L_2 , L_3... be points on BC such that BL_1 = L_1 L_2 = L_2 L_3 = .... 1 and M_1,M_2 , M_3,.... be points on CD such that CM_1 = M_1M_2= M_2 M_3=... = 1 . Then sum_(n = 1)^(a-1) ((AL_n)^2 + (L_n M_n)^2) is equal to :