Home
Class 11
MATHS
1/1.2+1/2.3+1/3.4+........+1/(n(n+1))=n/...

`1/1.2+1/2.3+1/3.4+........+1/(n(n+1))=n/(n+1),n in N` is true for

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the statement P(n):1/1.2+1/2.3+1/3.4+.....+1/{n(n+1)}=n/(n+1) .Show that P(1) is true.

For all nge1 , prove that 1/1.2+1/2.3+1/3.4+..........+1/(n(n+1))=n/(n+1)

1/1.2+1/2.3+1/3.4+…………….+1/(n(n+1))=n/(n+1) forall n in N.

Consider the statement P(n):1/1.2+1/2.3+1/3.4+.....+1/{n(n+1)}=n/(n+1) .Prove that P(n) is true for all n in N using the principle of mathematical induction.

1.2+2.3+3.4+.........+n(n+1)=(1)/(3)n(n+1)(n+3)

By using the principle of mathematical induction , prove the follwing : P(n) : (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + …….+ (1)/(n(n+1)) = (n)/(n+1) , n in N

P(n) : 1^(2) + 2^(2) + 3^(2) + .......+ n^(2) = n/6(n+1) (2n+1) n in N is true then 1^(2) +2^(2) +3^(2) + ........ + 10^(2) = .......

1.2+2.3+3.4+…………..+n(n+1)=n/3(n+1)(n+2) forall n in N.

1.2.3+2.3.4+....+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.2.3)+ (1)/(2.3.4)+ (1)/(3.4.5)+....+ (1)/(n(n+1)(n+2))= (n(n+3))/(4(n+1)(n+2))