Home
Class 12
MATHS
If theta lies in the second quadrant. T...

If `theta` lies in the second quadrant. Then the value of `sqrt((1-sin theta)/(1+sin theta))+sqrt((1+sin theta)/(1-sin theta))` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt((1+sin theta)/(1-sin theta))+sqrt((1-sin theta)/(1+sin theta))=2sec theta

Evaluate: sqrt((1-sin theta)/(1+sin theta)) .

If theta lies in the second quadrant, then sqrt((1-sintheta)/(1+sin theta))+sqrt((1+sin theta)/(1-sin theta)) is equal to :

If pi/2 < theta < pi, then sqrt((1- sin theta)/(1+ sin theta))+sqrt((1+ sin theta)/(1- sin theta)) is equal to

If 0 < theta < pi , then the value of sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta)) will be-

cos theta=sqrt(1-sin theta)

cos theta=sqrt(1-sin theta)

If pi/2 lt theta lt pi then sqrt((1-sin theta)/(1+sin theta))+sqrt((1+sin theta)/(1-sin theta))=

What is sqrt((1+"sin"theta)/(1-"sin"theta)) equal to?