Home
Class 12
MATHS
(dy)/(dx)=e^(x-y)+xe^(-y)...

(dy)/(dx)=e^(x-y)+xe^(-y)

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

(dy)/(dx)=(y+xe^(-(2y)/(x)))/(x)

The general solution of (dy)/(dx)=2xe^(x^(2)-y) is

The general solution of (dy)/(dx)=2xe^(x^(2)-y) is

y(dy)/(dx)=xe^(x^(2)+y^(2))

y(dy)/(dx)=xe^(x^(2)+y^(2))

The solution of (dy)/(dx)+x=xe^((n-1)y)

Solve the differential equation: (dy)/(dx)+2y=xe^(4x))