Home
Class 10
MATHS
यदि x = r sin A cos C , y = r sin A sin ...

यदि x = r sin A cos C , y = r sin A sin C तथा z = r cos A , तो सिद्ध कीजिए कि `x^(2) + y^(2) + z^(2) = r^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x^(2) + y^(2) + z^(2) = r^(2)

If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x^(2) + y^(2) + z^(2) = r^(2)

If x=r sin alpha cos beta, y= r sin alpha sin beta and z= r cos alpha , prove that x^(2)+y^(2) + z^(2) = r^(2).

If x=r sin A cos C,quad y=r sin A sin C and z=r cos A, prove that r^(2)=x^(2)+y^(2)+z^(2)

If x = r cos theta sin phi, y = r sin theta sin phi , and z= r cos phi , prove that x^(2)+y^(2) + z^(2)=r^(2) .

If x = r cos theta cos phi, y = r cos theta sin phiz = r sin theta, then x ^ (2) + y ^ (2) + z ^ (2) = (i) r ^ (2) (ii ) y ^ (2) (iii) x ^ (2) (iv) z ^ (2)

If x=r sin theta cos varphi,y=r sin theta sin varphi and z=r cos theta, then x^(2)+y^(2)+z^(2)=r^(2)(b)x^(2)+y^(2)-z^(2)=r^(2)(c)x^(2)-y^(2)+z^(2)=r^(2)(d)z^(2)+y^(2)-x^(2)=r^(2)

If x=r cos theta cos phi, y=r cos theta sin phi, z=r sin theta , then prove that x^(2)+y^(2)+z^(2)=r^(2).

If x=r sin theta cos phi, y= r sin theta sin phi, z=r cos theta , prove that x^2+y^2+z^2=r^2 .