Home
Class 12
MATHS
" 5.Prove that "cos(2sin^(-1)x)=1-2x^(2)...

" 5.Prove that "cos(2sin^(-1)x)=1-2x^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos (2 sin^(-1) x) = 1-2x^2

Prove that : cos (2 sin^(-1) x) = 1-2x^2

prove that [cos(sin^(-1) x)]^(2) = [sin(cos^(-1) x)]^(2) .

Prove that cos^-1x=2sin^-1sqrt((1-x)/2)

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Prove that, {cos(sin^(-1)x)}^2 = {sin(cos^(-1)x)}^2 .

Prove that sin[Cot^(-1) (2x)/(1-x^2)+Cos^(-1)((1-x^(2))/(1+x^(2)))]=1 .

Prove that 2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))

Prove that 2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))

Prove that 2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))