Home
Class 12
MATHS
[" of "f(x)=(2)/(4^(x)+2),x in R" dil "]...

[" of "f(x)=(2)/(4^(x)+2),x in R" dil "],[f((1)/(2011))+f((2)/(2011))+...+f((2010)/(2011))" jु भूє्य शुं थlय? "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(2)/(4^(2)+2) for real numbers x, then f((1)/(2011))+f((2)/(2011))+...+f((2010)/(2011))*1005100410061008

If f(x)=2/(4^x+2) for real numbers x , then f(1/(2011))+f(2/(2011))++f((2010)/(2011)) . (a) 1005 (b) 1004 (c) 1006 (d) 1008

IF f(x)=(9^x/(9^x+3)), then f(1/2012)+f(2/2012)+...+(2011/2012) is equal to

If f(x+y)=f(x*y) , ∀x,yϵR and f(2011)=2010 then f(2012)=

Let f(n) denotes the square of the sum of the digits of natural number n,where f^(2)(n) denotes f(f(n)).f^(3)(n) denote f(f(f(n))) and so on.the value of (f^(2013)(2011)-f^(2011)(2011))/(f^(2013)(2011)-f^(2012)(2011)) is...

Let f:R rarr R such that f(f(x))=1-x then f((1)/(4))+f((1)/(2))+f((3)/(4))

If log_(4)((2f(x))/(1-f(x)))=x, " then "(f(2010)+f(-2009)) is equal to

If log_(4)((2f(x))/(1-f(x)))=x, " then "(f(2010)+f(-2009)) is equal to

If log_(4)((2f(x))/(1-f(x)))=x, " then "(f(2010)+f(-2009)) is equal to

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2)(0)=1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .