Home
Class 12
MATHS
Let f be continuous , and strictly monot...

Let f be continuous , and strictly monotonic increasing, on [0, a ] Let `g=f^(-1)` . If `f (0)=0,0 <=w<=a , 0<=h<= f(a)` , prove that `int_0^wf+int_0^hg>=wh` . Hence evaluate `int_0^(pi/2)sin xdx int_0^1sin^(-1) xdx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(pi/2)sin^4xdx

Evaluate: int_0^(pi/2)sin^4xdx

int_0^(pi/2)sin^2xdx =

int_(0)^( pi)sin xdx

Evaluate: int_0^(pi//2)sin^4xdx

Evaluate int_0^(pi/2) log sin xdx

int_(0)^( pi)1+sin xdx

"int_0^pi sin^(2)xdx

int_(0)^(1)x sin^(-1)xdx

int_(0)^(1)Sin^(-1)xdx=