Home
Class 11
MATHS
prove that sum(k=1)^n k2^(-k)=2[1-2^(-n)...

prove that `sum_(k=1)^n k2^(-k)=2[1-2^(-n)-n.2^(-(n+1)])`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1,a_2,……….,a_(n+1) are in A.P. prove that sum_(k=0)^n ^nC_k.a_(k+1)=2^(n-1)(a_1+a_(n+1))

If a_k=1/(k(k+1)) for k=1 ,2……..,n then prove that (sum_(k=1)^n a_k)^2 =n^2/(n+1)^2

If A = [((1)/(2),alpha),(0,(1)/(2))] , prove that sum_(k=1)^(n)"det" (A^(k))=(1)/(3)(1-(1)/(4^(n))).

Prove by binomial expansion that sum_(k=1)^nk^2*"^nC_k=n(n+1)2^(n-2)

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Prove that sum_(k=1)^(n-1)(n-k)(cos(2k pi))/(n)=-(n)/(2) wheren >=3 is an integer

Let S_k=1+q+q^2+...+q^k and T_k=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^k q!=1 then prove that sum_(r=1)^(n+1) ^(n+1)C_rS_(r-1)=2^ nT_n