Home
Class 12
MATHS
प्राकृतिक संख्या a ज्ञात कीजिए, जिसके लि...

प्राकृतिक संख्या a ज्ञात कीजिए, जिसके लिए
` sum_(k=1)^(n) f(a+k) = 16 (2^(n) - 1)`
जहाँ फलन f सम्बन्ध `f(x+y) = f(x) f(y)` को सभी प्राकृतिक संख्याओं x,y के लिए सन्तुष्ट करता है तथा `f(1) =2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the natural number a for which sum_(k=1)^nf(a+k)=16(2^n-1) where the function f satisifies f(x+y)=f(x)f(y) for x, y in N and f(1)=2.

Find the natural number a for which sum_(k=1) ^(n)f(a+k)= 16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural numbers x,y and further f(1)=2 .

The natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x)*f(y) for all natural numbers x,y and further f(1)=2 is

Find the natural no. a for which sum _(k=1)^nf(a+k)=16(2^n-1) where the function f satisfies f(x+y)=f(x)f(y) for all natural no. x,y, and further f(1)=2.

Find the natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1), where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural number x,y and,further,f(1)=2.

The value of natural number 'a' for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) , where the function satisfies the relation f(x+y)=f(x).f(y) for all natural numbers x, y and further f(1)=2 is

Find the natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x).f(y) for all natural numbers and also f(1)=2

Let sum_(k=1)^(10)f(a+k)=16(2^(10)-1), where the function f satisfies f(x+y)=f(x)f(y) for all natural numbers x, y and f(1) = 2. Then, the natural number 'a' is

Let sum_(k=1)^(10)f(a+k)=16(2^(10)-1), where the function f satisfies f(x+y)=f(x)f(y) for all natural numbers x, y and f(1) = 2. Then, the natural number 'a' is