Home
Class 11
MATHS
Prove the following by using the princip...

Prove the following by using the principle of mathematical induction for all `n in N` : `a+a r+a r^2+""dot""""dot""""dot+a r^(n-1)=(a(r^n-1))/(r-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following by using the principle of mathematical induction for all n in N : 1^3+2^3+3^3+""dot""""dot""""dot+n^3=((n(n+1))/2)^2

Prove the following by using the principle of mathematical induction for all n in N :- a + ar + ar^2+...+ ar^(n-1)=(a(r^n-1))/(r-1) .

Prove the following by using the principle of mathematical induction for all n in N 10^(2n-1) + 1 is divisible by 11.

Prove the following by using the principle of mathematical induction for all n in N : a+a r+a r^2+...+a r^(n-1)=(a(r^n-1))/(r-1)

Prove the following by using the principle of mathematical induction for all n in N a+ar + ar^2 +…….+ ar^(n-1) = (a(r^n - 1))/(r - 1)

Prove that by using the principle of mathematical induction for all n in N : a+ ar+ ar^(2)+ ..+ ar^(n-1)= (a(r^(n)-1))/(r-1)

Prove that by using the principle of mathematical induction for all n in N : a+ ar+ ar^(2)+ ..+ ar^(n-1)= (a(r^(n)-1))/(r-1)

Prove the following by using the principle of mathematical induction for all n in N :- 10^(2n-1) + 1 is divisible by 11.

Prove the following by using the principle of mathematical induction for all n in Nvdotsa+ar+ar^(2)+...+ar^(n-1)=(a(r^(n)-1))/(r-1)

Using the principle of finite Mathematical Induction prove the following: (iv) a+ar+ar^(2)+……..+"n terms" = (a(r^(n)-1))/(r-1) , r != 1 .