Home
Class 12
MATHS
If alpha, beta ,gamma are roots of x^(3)...

If `alpha, beta ,gamma` are roots of `x^(3) + px^(2) + qx + r = 0 ` then `sum (1)/(alpha^(2))` =

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are roots of x^(3) - px^(2) + qx - r = 0 then sum alpha^(2) (beta + gamma) =

If alpha, beta,gamma are roots of x^(3) - px^(2) + qx - r = 0 then sum alpha (beta + gamma) =

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then sum (1)/(alpha beta ) =

If alpha, beta, gamma are roots of the equation x^(3) - px^(2) + qx - r = 0 , then sum alpha^(2) beta =

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then sum alpha^(2) beta^(2) =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha, beta , gamma are the roots of x^(3) - px^(2) + qx - r = 0 then alpha^(2) + beta^(2) + gamma^(2) =

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then sum(alpha - beta )^(2) =