Home
Class 11
MATHS
Let f(x) = tanx tan 2x + tan2x tan4x + t...

Let f(x) = tanx tan 2x + tan2x tan4x + tan4x tanx where `x =( 2pi)/7` . Find `|f(x) + 3|`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=tan x tan2x+tan2x tan4x+tan4xtan x where x=(2 pi)/(7). Find |f(x)+3|

tanx + tan2x + tan3x = tanx tan2x tan3x

tanx + tan2x + tan3x=0

Show that tanx tan 2x tan 3x = tan 3x-tan 2x- tan x

Solve :tanx+tan2x+tan3x=tanxtan2xtan3x,where 0lexle2pi

Show that : tan 3x tan 2x tan x =tan 3x-tan2x-tanx

Show that, tan3xtan2xtanx=tan3x-tan2x-tanx .

If tanx cdot tan 2x cdot tan 7x =tanx+tan2x+tan7x, then x=_____

Differentiate (tanx tan 2x tan 3x tan 4x) w.r.t. x.