Home
Class 12
MATHS
If (6x^2-5x-3)/(x^2-2x+6)<=4 then least...

If `(6x^2-5x-3)/(x^2-2x+6)<=4` then least and highest values of `4x^2` are :

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (6x^2-5x-3)/(x^2-2x+6)le 4

Solve (6x^2-5x-3)/(x^2-2x+6)le 4

Solve (6x^2-5x-3)/(x^2-2x+6)le 4

(x^(2)-5x-6)/(x^(2)+3x+2)

If (x^3-6x^2+10x-2)/(x^2-5x+6)=f(x)+A/(x-2)+B/(x-3) , then f(x)=

If (x^(2)+6x-16)/(x^(2)-5x+6)=(-6)/(x^(2)-2x-3) , then which of the following could be a value of x?

Resolve (x^(3)-6x^(2)+10x-2)/(x^(2)-5x+6) into partial fractions:

Resolve (x^(3)-6x^(2)+10x-2)/(x^(2)-5x+6) into partial fractions:

int(x^(3)-6x^(2)+10x-2)/(x^(2)-5x+6)dx=

Resolve (x^(3)-6x^(2)+10x-2)/(x^(2)-5x+6) into partial fractions.