Home
Class 11
MATHS
Let f(x)=(x^(2)+1)/([x]), 1lexlesqrt(10)...

Let `f(x)=(x^(2)+1)/([x])`, `1lexlesqrt(10)` .Then (where `[ .]` denotes the G.I.F) range of `f(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = (x^(2))/((1+x^(2)) .Then range (f ) =?

Let f(x)=1+|x|, x lt -1 [x], x ge -1 , where [.] denotes the greatest integer function. Then f{f(-2,3)} is equal to

Let f(x) be a function given by f(x) =(x^2+1)/([x]) where [] denotes the greatest interger function .Then f(x) is monotonically

Let f(x)=x^(5)[1/(x^(3))],x!=0 & f(0)=0 (where [.] represent G.I.F.), Then lim_(xto0)f(x)

If (x)={g^(x),x =0f(x)={g^(x),x =0 where [.1) denotes the greatest integer function. The f(x)

Let f:(1,3)rarr R be a function defined by f(x)=(x[x])/(1+x^(2)) , where [x] denotes the greatest integer <=x .Then the range of f is

Let f(x)=[9^(x)-3^(x)+1] for all x in(-oo,1), then the range of f(x) is,([.] denotes the greatest integer function).

Let f(x)=(x)/(1+x^(2)) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greatest integer function), then

Lt_(x rarr4^(+))(x^(2)-7x+12)/(x-[x]) =[ where [ ] denotes G.I.F.]