Home
Class 12
MATHS
The value of 1+1. 1 !+2. 2 !+3. 3 !+......

The value of `1+1. 1 !+2. 2 !+3. 3 !+...........+n.n!` is (A) `(n+1)!+1` (B) `(n-1)!+1` (C) `(n+1)!-1` (D) `(n+1)!`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 1+1.1!+2.2!+3.3!+.........+n.n! is (A) (n+1)!+1(B)(n-1)!+i(C)(n+1)!-1(D)(n+1)!

Sum of series : 1+2+3+......... +n is (A) ((n)(n+1))/2 (B) n(n+1) (C) ((n+1)(n+2))/2 (D) none of these.

The value of C_1/2+C_3/4+C_5/6+………. is equal to (A) (2^n=1)/(n-10 (B) 2^n/(n=1) (C) (2^n+1)/(n+1) (D) (2^n-1)/(n+1)

Find the value of ( 1 - 1/3 ) ( 1 - 1/4 ) ( 1 - 1/5 ) ---------- ( 1 - 1/n ) is ( a ) 2/n ( b ) 4/n ( c ) 3/n ( d ) 5/n

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

1+2.2+3.2^(2)+4.2^(3)+...+n*2^(n-1) = (i) 1+ (1+n) 2^(n) (ii) 1- (1+n) 2^(n) (iii) 1- (1-n) 2^(n) (iv) 1+ (1-n) 2^(n)

( (C_0 +C_1)(C_1 + C_2)(C_2 +C_3).....(C_(n-1) +C_n))/(C_0C_1C_2....C_n)= (A) (n+1) ^n/n (B) (n+1)^(n-1)/n! (C) (n+1)^n/(n!)(D) (n+1)/(n!)

1.2+2.3+3.4+.........+n(n+1)=(1)/(3)n(n+1)(n+3)