Home
Class 12
MATHS
For xvarepsilon R , x!=0,x!=1, Let f0(x)...

For x`varepsilon R , x!=0,x!=1,` Let `f_0(x) = 1/(1-x) ` and `f_(n+1)(x) = f_0(f_n(x))`, n=0,1,2,3.... Then the value of `f_(100)(3) + f_1(2/3)+f_2(3/2)` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

For x in R , x ne0, 1, let f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2….. Then the value of f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2)) is equal to

If f(x)=(1-x)^(n) , then the value of f(0)+f'(0)+(f''(0))/(2!)+...+(f^(n)(0))/(n!) , is

Let f(x)=2x^(1//3)+3x^(1//2)+1. The value of lim_(hrarr0)(f(1+h)-f(1-h))/(h^(2)+2h) is equal to

Let f(x)=int(1)/((1+x^(2))^(3//2))dx and f(0)=0 then f(1)=

Let f(x)=x^(3)/3-x^(2)/2+x-16 . Find f^(')(0), f^(')(-1) .

If f(x)=int(3x^(2)+1)/((x^(2)-1)^(3))dx and f(0)=0, then the value of (2)/(f(2))| is

Let f(x) =intsqrtx/((1+x)^2)dx(xge0) . The f(3) - f(1) is equal to :