Home
Class 12
MATHS
Let vec u ,\ vec v\ a n d\ vec w be v...

Let ` vec u ,\ vec v\ a n d\ vec w` be vector such ` vec u+ vec v+ vec w=0.\ ` if `| vec u|=3,\ | vec v|=4\ a n d\ | vec w|=5,` then find ` vec udot vec vdot+ vec vdot vec w+ vec wdot vec udot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec u , vec va n d vec w be vectors such that vec u+ vec v+ vec w=0. If | vec u|=3,| vec v|=4a n d| vec w|=5, then vec udot vec v+ vec vdot vec w+ vec wdot vec u is 47 b. -25 c. 0 d. 25

Let vec u,vec v and vec w be vector such vec u+vec v+vec w=vec 0* If |vec u|=3,|vec v|=4 and |vec w|=5, then find vec u.vec v+vec v*vec w+vec w*vec u

Let vec a , vec b , vec c are three vectors , such that vec a + vec b + vec c = vec 0 .If , |vec a|=3 , |vec b|=4 and | vec c|=5 , then the value of, |vec a+vec b|^(2) + |vec b-vec c|^(2) + |vec c+vec a|^(2) , equal to :

A vector vec d is equally inclined to three vectors vec a= hat i+ hat j+ hat k , vec b=2 hat i+ hat ja n d vec c=3 hat j-2 hat kdot Let vec x , vec y ,a n d vec z be thre vectors in the plane of vec a , vec b ; vec b , vec c ; vec c , vec a , respectively. Then vec xdot vec d=-1 b. vec ydot vec d=1 c. vec zdot vec d=0 d. vec rdot vec d=0,w h e r e vec r=lambda vec x+mu vec y+delta vec z

If vec a a n d vec b are two vectors such that vec adot vec b=6, | vec a|=3 a n d | vec b|=4. Write the projection of vec a on vec bdot

vec u = vec a-vec b, vec v = vec a + vec b and | vec a | = | vec b | = 2 then | vec u xxvec v | is equal to

Given that vec a , vec b , vec p , vec q are four vectors such that vec a+ vec b=mu vec p , vec b*vec q=0a n d|vec b|^2=1,w h e r emu is a scalar. Then |( vec adot vec q) vec p-( vec pdot vec q) vec a| is equal to a.2| vec pdot vec q| b. (1//2)| vec pdot vec q| c. | vec pxx vec q| d. | vec pdot vec q|

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

The condition for equations vec rxx vec a= vec ba n d vec rxx vec c= vec d to be consistent is vec bdot vec c= vec adot vec d b. vec adot vec b= vec cdot vec d c. vec bdot vec c+ vec adot vec d=0 d. vec adot vec b+ vec cdot vec d=0

Let vec a, vec b, vec c, vec d be unit vectors such that vec a * vec b + vec a * vec c + vec a * vec d + vec b * vec c + vec b * vec d + vec c * vec d = -2 Then [vec with bvec c] + [vec with bvec d] + [vec with cvec d] + [vec bvec cvec d] =