Home
Class 11
MATHS
If bara=(2,1,-1),bar(b)=(1,-1,0),bar(c)=...

If `bara=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1)` then the unit vector parallel to `bar(a)+bar(b)-bar(c)` ,but in the opposite direction is

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) but in the opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) but in the opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) but in the opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) , but in the opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) , but in opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) , but in opposite direction is

if bar(a),bar(b),bar(c) are any three vectors then prove that [bar(a),bar(b)+bar(c),bar(a)+bar(b)+bar(c)]=0

bar(a),bar(b),bar(c ) are three coplanar vectors, If bar(a) is not parallel to bar(b) , Show that

If bar(a),bar(b),bar(c) are three non zero vectors,then bar(a).bar(b)=bar(a).bar(c)rArr

If bar(a),bar(b) and bar(c) are mutually perpendicular vectors then [bar(a)bar(b)bar(c)]=