Home
Class 12
MATHS
If |vec a|=3,|vec b|=5,|vec c|=7 and vec...

If `|vec a|=3,|vec b|=5,|vec c|=7` and `vec a+vec b+vec c=0` then angle between `vec a` and `vec b` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec a|+|vec b|=|vec c| and vec a+vec b=vec c, then find the angle between vec a and vec b

If vec a + vec b = vec c and | vec a | = | vec b | = | vec c | find the angle between vec a and vec b

If vec a+vec b+vec c=0 and |vec a|=3,|vec b|=5,|vec c|=7, show that the angle between vec a and vec b is 60^(@)

If |veca| = 1, |vec b| = 2, |vec c| = 3 and vec a +vec b +vec c = 0 , then the value of vec a * vec b +vec b. vec c +vec c* vec a equals

vec a + vec b + vec c = vec 0, | vec a | = 3, | vec b | = 5, | vec c | = 7 then angle between vec a and vec b is

If vec a+vec b+vec c=0 and |vec a|=3,|vec b|=5 and |vec c|=7, show that the angle between vec a and vec b is 60^(@) .

vec a+vec b+vec c=vec 0,vec |a|=3,|vec b|=5 and |vec c|=7 find the anglebetweeen vec a and vec b

vec a+vec b+vec c=vec 0,|vec a|=3,|vec b|=5,|vec c|=7 then the angle between vec a and vec b is (pi)/(6) b.(2 pi)/(3) c.(5 pi)/(3)d*(pi)/(3)

Vector vec a,vec b and vec c are such that vec a+vec b+vec c=vec 0 and |a|=3,|vec b|=5 and |vec c|=7. Find the angle between vec a and vec b.

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is (pi)/(2), then