Home
Class 11
MATHS
The set of all values of a for which the...

The set of all values of a for which the function `f(x)=(a^2-3a+2)(cos^2\ x/4-sin^2\ x/4)+(a-1)x+sin1` does not possess critical points is (A) `[1,oo)` (B) `(0,1) uu (1,4)` (C) `(-2,4)` (D) `(1,3) uu (3,5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The set of all values of a for which the function f(x)=(a^(2)-3a+2)(cos^(2)backslash(x)/(4)-sin^(2)backslash(x)/(4))+(a-1)x+sin1 does not possess critical points is (A) [1,oo)(B)(0,1)uu(1,4)(C)(-2,4)(D)(1,3)uu(3,5)

The range of values of k for which the function f(x)=(2k-3)(x+tan2)+(k-1)(sin^(4)x+cos^(4)x) does not possess critical points is

The set of all values a for which f(x) = (a^(2) - 3a+2)(cosx/2)+(a-1)x + sin 1 does not posses critical point, is

The value of a for which the function f(x)=(4a-3)(x+log5)+2(a-7)(cot x)/(2)(sin^(2)x)/(2) does not possess critical points is (-oo,-(4)/(3)) (b) (-oo,-1)(c[1,oo)(d)(2,oo)

If the function f(x) = (2a-3)(x+2 sin3)+(a-1)(sin^4x+cos^4x)+log 2 does not process critical poits , then

The set of value(s) of a for which the function f(x)=(ax^(3))/(3)+(a+2)x^(2)+(a-1)x+2 possesses a negative point of inflection is (-oo,-2)uu(0,oo)( b) {-(4)/(5)}(-2,0)(d) empty set

if the complete set of values (s) of 'a' for which the function f (x) =(ax^(3))/(3)+(a+2) x^(2) +(a-1) x+2 possess a negative point of inflection is (-oo, alpha),uu(beta,oo)" then " |alpha|+|beta| is :