Home
Class 11
MATHS
Let f: [-3,3] rarr R where f(x)=x^(3)+si...

Let f: `[-3,3] rarr R` where f(x)=`x^(3)+sin x+[(x^(2)+2)/(a)]` be an odd function then value of a is where [.] represents greatest integer functions

Promotional Banner

Similar Questions

Explore conceptually related problems

If g: -3 3 rarr R where g(x)=x^(5)+sin x+ (x^(2)+1)/(1)-1 is an odd function then value of parameter lambda is (where ) represents greatest integer function)

If g: -3 3 rarr R where g(x)=x^(5)+sin x+ (x^(2)+1)/(lambda) is an odd function then value of parameter lambda is (where * represents greatest integer function)

If g: -3 3 rarr R where g(x)=x^(5)+sin x+ (x^(2)+1)/(lambda) is an odd function then value of parameter lambda is (where * represents greatest integer function)

If g: -3 3 rarr R where g(x)=x^(5)+sin x+ (x^(2)+1)/(lambda) is an odd function then value of parameter lambda is (where * represents greatest integer function)

If g: -3 3 rarr R where g(x)=x^(5)+sin x+ (x^(2)+1)/(2) is an odd function then value of parameter lambda is (where ) represents greatest integer

If g: -3 3 rarr R where g(x)=x^(5)+sin x+ (x^(2)+1)/(2) is an odd function then value of parameter lambda is (where ) represents greatest integer

Let f[-3,3]rarr R where f(x)=x^(3)+sin x+[(x^(2)+2)/(a)], be an odd function (where [.] represents greatest integer function).Then the value of a is

If g: -3 3 rarr R where g(x)=x^(5)+sin x+ (x^(2)+1)/(lambda) is an odd function then value of parameter lambda is (where - represents greatest integer f

If g: -3 3 rarr R where g(x)=x^(5)+sin x+ (x^(2)+1)/(lambda) is an odd function then value of parameter lambda is (where - represents greatest integer f

Let f:[-10,10]rarr R where f(x)=sin x+[(x^(2))/(a)] be an odd function. Then set of values of parameter a is/are ( [.] denotes greatest integer function)