Home
Class 12
MATHS
f(x)=tan(x/2)sec x+tan(x/2^(2))sec(x/2)+...

`f(x)=tan(x/2)sec x+tan(x/2^(2))sec(x/2)+tan(x/2^(3))sec(x/2^(2))+.....+tan(x/2^(n))*sec(x/2^(n-1))` and `g(x)=f(x)+tan((x)/(2^(n)))` where `x in(-(pi)/(2),(pi)/(2))` and `n in N` then `g(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

sec 2x - tan 2x=

log(sec.(x)/(2)+tan.(x)/(2))

(tan 2x)/(1+ sec 2x) = tan x

Find the period of f(x)=sin x+tan(x)/(2)+sin(x)/(2^(2))+tan(x)/(2^(3))+...+sin(x)/(2^(n-1))+tan(x)/(2^(n))

int(x^(2)(x sec^(2)x+tan x))/((x tan x+1)^(2))

sum_(r=1)^(n)tan((x)/(2^(r)))sec((x)/(2^(r-1)));r,n in N

Range of f(x)=(sec x+tan x-1)/(tan x-sec x+1)x in(0,(pi)/(2))

Provet that "tan "((pi)/(4)+(x)/(2)) = " tan x + sec x "

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

int(sec xdx)/((sec x+tan x)^(5))=((sec x+tan x)^(n))/(n)+c then n=