Home
Class 9
MATHS
If log(12)18 = x and log(24)54 = y, then...

If `log_(12)18 = x and log_(24)54 = y`, then show that `xy + 5(x-y) = 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(12)18=x and log_(24)4=y then find the value of xy-(2x+5y)+4

If a=log_(12)18 and b=log_(24)54 then find the value of ab+5(a-b)

If log_(12)6=x,log_(24)54=y, then find the value of xy+(5x-2y)+4

If log((x+y)/5) = 1/2 (log x + log y) , then show that x/y + y/x = 23 .

If a=log_(12)18,b=log_(24)54, then find the value of ab+5(a-b)

If log_12 18=x, log_24 4=y then the value of xy-(2x+5y)+4 is

If y= log( log 2x) , show that xy_2 + y_1 (1+ xy_1) = 0

If a=(log)_(12)18 , b=(log)_(24)54 , then find the value of a b+5(a-b)dot

If a=(log)_(12)18 , b=(log)_(24)54 , then find the value of a b+5(a-b)dot