Home
Class 12
MATHS
If In=int0^(pi//4)tan^("n")x dx , prov...

If `I_n=int_0^(pi//4)tan^("n")x dx` , prove that `I_n+I_(n-2)=1/(n-1)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, prove that I_(n)+I_(n-2)=(1)/(n+1)

If I_(n) = int_0^(pi/4) tan^(n)x dx , then n(I_(n-1)+I_(n+1)) =

IF I_n=int_0^(pi//4) tan^n x dx then what is I_n+I_(n+2) equal to

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=

I_(n) = int_0^(pi/4) tan^(n) x dx, n in N , then I_(10)+I_(8) =

If I_(n) = int_((pi)/(4))^((pi)/(2)) cot^(n) x dx , prove that I_(n) + I_(n-2) = (1)/(n-1)

If I_(n) = int_(0)^(pi//4) tan^(n) x dx then (1)/(I_(3)+I_(5))=

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals