Home
Class 12
MATHS
If 2y=x(1+(dy)/(dx)), prove that, (d^(2)...

If `2y=x(1+(dy)/(dx))`, prove that, `(d^(2)y)/(dx^(2))`=constant.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=a+(b)/(x) ; prove that x(d^(2)y)/(dx^(2))+2(dy)/(dx)=0

If y=((1+x)/(1-x))^(n) , prove that (1-x^(2))(d^(2)y)/(dx^(2))=2(n+x)(dy)/(dx).

If y=x^(3)log((1)/(x)) , prove that (d^(2)y)/(dx^(2))-(2)/(x)(dy)/(dx)+3x=0 .

If e^y(x+1)=1 , prove that (d^2y)/(dx^2)=((dy)/(dx))^2

If y= cot x, prove that (d^(2)y)/(dx^(2)) + 2y (dy)/(dx)= 0.

If y=x ln((ax)^(-1)+a^(-1)) prove that x(x+1)(d^(2)y)/(dx^(2))+(dy)/(dx)=y=1

Ify=x log[(ax)^(-1)+a^(-1)], prove that x(x+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=y-1

If y=e^(x)(sin x+cos x), prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)=2y=0

If y = e^(x) (sin x + cos x ) , prove that (d^(2) y)/( dx^(2)) - 2 (dy)/( dx) + 2 y = 0

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)