Home
Class 12
MATHS
If x=y^(y^(y^(...oo))), then show that, ...

If `x=y^(y^(y^(...oo)))`, then show that, `(dy)/(dx)=(y(1-x logy))/(x^(2))` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

If y=e^(x-y) then show that (dy)/(dx) = y/(1+y)

If y=e^(x^(e ^(x^(...oo)))) ,show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x logy)) .

If y= x^(x^(x...)) , then show that dy/dx = frac{y^2}{x(1-log y)}

x(dy)/(dx)=y(logy-logx+1)

x(dy)/(dx)=y(logy-logx+1)

x(dy)/(dx)=y(logy-logx-1)

If y=e^(x)+e^(x)+e^(((x+rarr oo))), show that (dy)/(dx)=(y)/(1-y)

If y=a^(x^(a^(x^(…oo)))) , show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x log y)) .

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)