Home
Class 11
MATHS
If tan alpha and tan beta are the roots ...

If tan `alpha` and tan `beta` are the roots of `x^(2) + ax + b = 0,` then `(sin (alpha + beta))/(sin alpha sin beta)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan alpha and tan beta are the roots of x^2 + ax + b = 0 , where a ne 0 then sin (alpha + beta) sec alpha sec beta is equal to ……………….

If tan alpha and tan beta are the roots of the equation x^(2) +px + q = 0 , then the value of sin^(2) (alpha +beta) + p cos (alpha + beta) sin (alpha + beta) + q cos^(2) (alpha + beta) is

If tan alpha, tan beta are the roots of the equation x^(2)+px+q=0 then sin^(2) (alpha+ beta)+ p sin(alpha+ beta) (cos+beta) +q cos^(2)(alpha+ beta)=

Given that tan alpha and tan beta are the roots of the equation x^(2)+bx+c=0 with bne0 . What is sin(alpha+beta)secalphasecbeta equal to ?

tan alpha and tan beta are roots of the equation x^(2)+ax+b=0, then the value of sin^(2)(alpha+beta)+a sin(alpha+beta)cos(alpha+beta)+b cos^(2)(alpha+beta) is equal to

tan alpha and tan beta are roots of the equation x^(2)+ax+b=0, then the value of sin^(2)(alpha+beta)+a sin(alpha+beta)*cos(alpha+beta)+b cos^(2)(alpha+beta) is equal to

If 5sin alpha=3sin(alpha+2 beta)!=0, then tan(alpha+beta) is equal to

If tan theta = ( tan alpha + tan beta)/(1 + tan alpha tan beta),"show that " sin 2 theta =(sin 2 alpha + sin 2 beta)/(1+sin 2 alpha sin 2 beta)