Home
Class 12
MATHS
यदि y = e^(ax) sin bx, तो सिध्द कीजिए कि...

यदि `y = e^(ax) sin bx`, तो सिध्द कीजिए कि `y_(2) - 2ay_(1) + (a^(2)+b^(2))y = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= e^(ax) sin bx then show that, y_(2)- 2ay_(1) + (a^(2) + b^(2))y= 0

If y=e^(ax)sin bx, then prove that y_(2)-2ay_(1)+(a^(2)+b^(2))y=0

y=e^(ax)sin bx : Find y_1 .

If y=e^(ax) sin bx then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y= e^(ax) sin(bx), show that y2 - 2ay1 + ( a^2 + b^2 ) y = 0

If y=e^(ax) sin be then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y = e^[ax] sin bx , prove that d^2y/dx^2 - 2a dy/dx +(a^2 + b^2 ) y = 0 .

If y = e^(-ax) cos (bx + c) , show that (d^2y)/(dx^2) + 2a(dy)/(dx) + (a^2 + b^2) y = 0

If y=e^(ax)cos bx, Show that (d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0

y=e^(ax)sin bx : Prove that y_2-2ay_1+(a^2+b^2)y=0 .