Home
Class 12
MATHS
यदि y=(logx)^(sinx)+(sinx)^(logx) तो सिद...

यदि `y=(logx)^(sinx)+(sinx)^(logx)` तो सिद्ध कीजिए कि `(dy)/(dx)=(logx)^(sinx)[cosxlog(logx)+(sinx)/(xlogx)]+(sinx)^(logx)[(logsinx)/x+cotxlogx]`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=(sinx)^(logx)

d/(dx)[(sinx)^(logx)]=

int(e^(logx)+sinx)cosxdx

Find (dy)/(dx), when: y=(logx)^(sinx)

((e^(x) + sinx)/(1+logx))

int (e^(logx)+sinx)cos dx

y= (logx)^(x)-x^(logx) find dy/dx

y=(tanx)^(logx)+(cosx)^(sinx)

int (e^(logx)+sinx)cosx dx

int(log(logx))/(x.logx)dx=