Home
Class 9
MATHS
If V is the volume of a cuboid of dime...

If `V` is the volume of a cuboid of dimensions `x ,\ y ,\ z\ a n d\ A` is its surface area, then `A/V` (a) `x^2y^2z^2` (b) `1/2(1/(x y)+1/(y z)+1/(z x))` (c) `1/2(1/x+1/y+1/z)` (d) `1/(x y z)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If V is the volume of a cuboid of dimensions x,y,z and A is its surface area,then (A)/(V)x^(2)y^(2)z^(2)( b) (1)/(2)((1)/(xy)+(1)/(yz)+(1)/(zx))(1)/(2)((1)/(x)+(1)/(y)+(1)/(z))(d)(1)/(xyz)

(1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^(2)

Prove that : =|{:(1,1,1),(x,y,z),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

Prove that |(1,x,x^2),(1,y,y^2),(1,z,z^2)|=(x-y)(y-z)(z-x)

Prove that |(1,x,x^2),(1,y,y^2),(1,z,z^2)| = (x-y)(y-z)(z-x)

Show that |(1,1,1),(x,y,z),(x^(2),y^(2),z^(2))|=(x-y)(y-z)(z-x)

1//x-1/y+1/z=4, 2/x+1/y-3/z=0, 1/x+1/y+1/z=2(x,y,z ne 0)

Prove that : =2|{:(1,1,1),(x,y,rz),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)