Home
Class 11
MATHS
" 29.For any triangle "ABC," prove that ...

" 29.For any triangle "ABC," prove that "a(cos C-cos B)=2(b-c)cos^(2)(A)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

For any triangle ABC, prove that a(cosC-cos B)\ =\ 2\ (b - c)\ cos^2(A/2)

For any triangle ABC,prove that a(b cos C-c cos B)=b^(2)-c^(2)

In any triangle ABC, prove that : a (cos C - cos B) = 2 (b-c) cos^2 frac (A)(2) .

In any triangle ABC, prove that : a (b cos C-c cos B) = b^2 -c^2 .

For any triangle ABC, prove that : sin""(B-C)/(2)=(b-c)/(a)cos((A)/(2))

In any Delta ABC, prove that :a(b cos C-c cos B)=b^(2)-c^(2)

For any triangle ABC, prove that (b+c)cos((B+C)/2)=acos((B-C)/2)

For any triangle ABC, prove that (cos A)/(a)+(cos B)/(b)+(cos C)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

For any triangle ABC, prove that (b+c)cos(B+C)/(2)=a cos(B-C)/(2)

For any triangle ABC, prove that : (b+c)cos((B+C)/(2))=acos((B-C)/(2))