Home
Class 13
MATHS
[" 55.If adj "B=A,|P|=|Q|=1," then adj "...

[" 55.If adj "B=A,|P|=|Q|=1," then adj "(Q^(-1)BP^(-1))" is "],[[" 55."," b."P|P|," c."PAQ," d."PA^(-1)Q]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If adj B=A,|P|=|Q|=1, then adj (Q^(-1)BP^(-1)) is PQ b.QAP c.PAQ d.PA^(1)Q

If adj B=A ,|P|=|Q|=1, then. adj(Q^(-1)B P^(-1)) is a. P Q b. Q A P c. P A Q d. P A^-1Q

If adj B=A ,|P|=|Q|=1, then. adj(Q^(-1)B P^(-1)) is a. P Q b. Q A P c. P A Q d. P A^-1Q

If adj B=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P A Q d. P A^1Q

If adj B=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P A Q d. P A^1Q

[" If "A" and "B" are square matrices "],[" of order "3times3," where "|A|=2" and "],[|B|=1," then "|(A^(-1))*adj(B^(-1))],[" adj "(2A^(-1))|=],[" (1) "1],[" (2) "8],[" (3) "7],[" (4) "4]

Prove that ("adj. "A)^(-1)=("adj. "A^(-1)) .

Prove that ("adj. "A)^(-1)=("adj. "A^(-1)) .

Prove that ("adj. "A)^(-1)=("adj. "A^(-1)) .

Prove that ("adj. "A)^(-1)=("adj. "A^(-1)) .