Home
Class 12
MATHS
" 0."lim(n rarr oo)[(n)/(n^(2)+1^(2))+(n...

" 0."lim_(n rarr oo)[(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+(n^(2)+n^(2)]" is equal to: "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo) { n/(n^(2)+1^(2)) + n/(n^(2)+2^(2))+......+ n/(n^(2)+n^(2))} is equal to

lim_(n rarr oo)(n^(2))/(2^(n))

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_(n rarr oo)[(1)/(n^(2))+(2)/(n^(2))+....+(n)/(n^(2))]

lim_(n rarr oo)(e^(2n)(n!)^(2))/(2n^(2n+1))

The value of lim_(n rarr oo)[(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))++(1)/(2n)] is