Home
Class 12
MATHS
The value of lim(xto 0)[(sinx.tanx)/(x^(...

The value of `lim_(xto 0)[(sinx.tanx)/(x^(2))]` is ……..
(where [.] denotes greatest integer function).

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)[(sin x)/(x)] is (where [.] denotes greatest integer function)

lim_(xto0)[m(sinx)/x] is equal to (where m epsilon I and [.] denotes greatest integer function)

lim_(xto0)[m(sinx)/x] is equal to (where m epsilon I and [.] denotes greatest integer function)

Solve lim_(xto0)[(tanx)/x] (where [.] denotes greatest integer function)

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )