Home
Class 12
MATHS
Show that the equation (10x-5)^(2)+(10y-...

Show that the equation `(10x-5)^(2)+(10y-5)^(2)=(3x+4y-1)^(2)` represents an ellipse, find the eccentricity of the ellipse.

Promotional Banner

Similar Questions

Explore conceptually related problems

if the equation (10x-5)^(2)+(10y-4)^(2)=lambda^(2)(3x+4y-1)^(2) represents a hyperbola then

If the equation (10x-5)^(2)+(10y -4)^(2)=lambda^(2) (3x+4y-1)^(2) represents a hyperbola then

3x^2+4y^2-6x+8y+k=0 represents an ellipse with eccentricity 1/2,

The equation (x^(2))/(10-lamda)+(y^(2))/(4-lamda)=1 represents an ellipse if

The equation (x^(2))/(10-a)+(y^(2))/(4-a)=1 represents an ellipse if

The equation (x^(2))/(10-a)+(y^(2))/(4-a)=1 represents an ellipse , if

The equation (x^(2))/(10-a)+(y^(2))/(4-a)=1 represents an ellipse , if

The equation (x^(2))/(10-a)+(y^(2))/(4-a)=1 represents an ellipse , if