Home
Class 12
MATHS
For a given point A(0,0), ABCD is a rhom...

For a given point A(0,0), ABCD is a rhombus of side 10 units where slope of AB is `4/3`and slope of AD is `3/4`. The sum of abscissa and ordinate of point C (where C lies in first quadrant) is

Promotional Banner

Similar Questions

Explore conceptually related problems

The slope of a straight line through A(4,3) is (4)/(3). The co-ordinates of the points on the line that are 5 unit away from A is

The slope of the tangent to the curve y=x^(2) -x at the point where the line y = 2 cuts the curve in the first quadrant, is

The slope of the tangent to the curve y=x^(2) -x at the point where the line y = 2 cuts the curve in the first quadrant, is

The slope of normal at any point P of a curve (lying in the first quadrant) is reciprocal of twice the product of the abscissa and the ordinate of point P. Then, the equation of the curve is (where, c is an arbitrary constant)

The slope of normal at any point P of a curve (lying in the first quadrant) is reciprocal of twice the product of the abscissa and the ordinate of point P. Then, the equation of the curve is (where, c is an arbitrary constant)

At any point on a curve, the slope of the tangent is equal to the sum of abscissa and the product of ordinate and abscissa of that point. If the curve passes through (0, 1), then the equation of the curve is

At any point on a curve , the slope of the tangent is equal to the sum of abscissa and the product of ordinate and abscissa of that point.If the curve passes through (0,1), then the equation of the curve is

At any point on a curve , the slope of the tangent is equal to the sum of abscissa and the product of ordinate and abscissa of that point.If the curve passes through (0,1), then the equation of the curve is

Find the equation of the curve passing through the point (0,1) if the slope of the tangent of the curve at each of it's point is sum of the abscissa and the product of the abscissa and the ordinate of the point.