Home
Class 11
MATHS
sin^(2)A cos^(2)B+cos^(2)A sin^(2)B...

sin^(2)A cos^(2)B+cos^(2)A sin^(2)B

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: tan^(2)A-tan^(2)B=(cos^(2)B-cos^(2)A)/(cos^(2)B cos^(2)A)=(sin^(2)A-sin^(2)B)/(cos^(2)A cos^(2)B)(sin A-sin B)/(cos A+cos B)+(cos A-cos B)/(sin A+sin B)=0

Prove that sin(A+B)sin(A-B)=sin^(2)A-sin^(2)B=cos^(2)B-cos^(2)A

Prove that cos(A+B)cos(A-B)=cos^(2)A-sin^(2)B=cos^(2)B-sin^(2)A

cos(A+B)*cos(A-B)= (a) sin^2A-cos^2B (b) cos^2A-sin^2B (c) sin^2A-sin^2B (d) cos^2A-cos^2B

(i) (1)/(sin^(2)a)-(1)/(sin^(2)B)=(cos^(2) a-cos^(2) B)/(sin^(2)a*sin^(2) B)

The value of sin^2 A cos^2 B + cos^2 A cos^2 B+sin^2 A sin^2 B + cos^2A sin^2B is ……..

Prove that cos (A + B) cos (A - B) = cos^(2) A - sin^(2) B = cos^(2) B- sin^(2) A

Prove the following (cos ^2A* sin^2 B)- (sin^2 A* cos ^2B)= cos^2 A- cos ^2B

If A+B+C=90^(@) then cos^(2)A+cos^(2)B+cos^(2)C=2+K sin A sin B sin C then K=

If : A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C= A) 2 cos A * cos B * sin C B) 2 cos B * cos C * sin A C) 2 sin A * sin B * cos C D) 2 sin B * sin C * cos A