Home
Class 11
MATHS
[" Using properties of determinant show ...

[" Using properties of determinant show that "],[qquad [" i) ",a+b,a,b],[a,a+c,c],[b,c,b+c]|=4abc]

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinant show that |(a+b,a,b),(a,a+c,c),(b,c,b+c)|=4abc

Using properties of determinants, show that |(b+a,a,a),(b,c+a,b),(c,c,a+b)|=4abc

3. Using properties of determinants, show that :|[b+c,a,b] , [c+a,c,a] , [a+b,b,c]| = (a + b + c) (a-c)^2

Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca] , [1 , c , a b]|=(a-b)(b-c)(c-a)

Using properties of determinants,prove the b+c,a,ab,c+a,bc,c,a+b]|=4abc

By using properties of determinants, show that : |[1,a,a^2],[1,b,b^2],[1,c,c^2]| = (a-b)(b-c)(c-a)

Using properties of determinants prove the following. abs[[b+c,a,a],[b,c+a,b],[c,c,a+b]]=4abc

Using properties of determinants, show that abs[[a,a^2,b+c],[b,b^2,c+a],[c,c^2,a+b]]=(b-c)(c-a)(a-b)(a+b+c)

By using properties of determinants. Show that: (i) |[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|=(a-b)(b-c)(c-a) (ii) |[1, 1, 1],[a, b, c],[ a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a+b+c)