Home
Class 12
MATHS
सिद्ध कीजिए दो परवलयों y ^(2) = 4...

सिद्ध कीजिए दो परवलयों ` y ^(2) = 4a (x + a) ` तथा ` y ^(2) = 4b (b - x ) ` से घिरे हुए क्षेत्र का क्षेत्रफल ` (8)/(3) sqrt (ab)(a + b ) ` है|

Promotional Banner

Similar Questions

Explore conceptually related problems

2x + 3y = 7 , (a+b + 1 )x + (a + 2b + 2) y = 4 (a + b ) + 1

Solve: (a - b )x + (a + b)y = a^(2) - 2ab - b^(2) and (a + b) (x + y) = a^(2) + b^(2)

Solve for 'x' and 'y': (a -b) x + (a + b) y =a^2 - b^2 - 2ab (a + b) (x + y) = a ^2+ b^2

If (5a - 3b) : (4a - 2b) = 2:3, then a:b is equal to: यदि (5a - 3b) : (4a - 2b) = 2:3 है, तो a : b का मान क्या होगा ?

Show that the area included between the parabolas y^2 = 4a(x + a) and y^2 = 4b(b - x) is 8/3 sqrt(ab) (a+b).

Show that the area included between the parabolas y^(2)=4a(x+a) and y^(2)=4b(b-x) is (8)/(3)sqrt(ab)(a+b)

Show that the ar5ea enclosed between the parabolas y^(2)=4a(x+a) and y^(2)=4b(b-x) where a gt 0,b gt 0 is (8)/(3)(a+b)sqrt(ab) sq units.

If a, b are noncollinear vectors and A = (x + 4y) a + (2x + y + 1)b, B = (y - 2x +2) a + (2x - 3y - 1) b and 3A = 2B, then (x, y) =

If line y = x - 8 meets y^(2) = 4x in A and B , then length of intercept AB is

Solve for 'x' and 'y': (a -b) x + (a + b) y =a^2 - b^2 - 2ab and (a + b) (x + y) = a ^2+ b^2