Home
Class 12
MATHS
[x in R,x!=0,a,b,c in Rquad 6" q6"," gif...

[x in R,x!=0,a,b,c in Rquad 6" q6"," gifl "6" ,"6660" ,"],[(1)/(1+x^(b-a)+x^(c-2))+(1)/(1+x^(c-b)+x^(a-b))+(1)/(1+x^(3-c)+x^(b-c))=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=0)^6 .^(6)C_(r) xx ^(6)C_(6-r) = ?

(2) If a=x^(q+r)*y^(p) , b=x^(r+p)*y^(q) , c=x^(p+q)y^(r) , show that a^(q-r)b^(r-p)c^(p-q)=1

If a+b+c=6 and a,b,c in R^(+) then prove that (1)/(6-a)+(1)/(6-b)+(1)/(6-c)>=(3)/(4)

sum_(r=1)^(6)6C_(r)

If 2 a+3 b+6 c=0, a, b, c in R then the equation a x^(2)+b x+c=0 has a root in

The HCF of the polynomials 9(x +a)^(p) (x -b)^(q) (x + c)^(r) and 12(x + a)^(p +3) (x -b)^(q-3) (x +c)^(r +2) " is " 3(x +a)^(6) (x -b)^(6) (x + c)^(6) , then the value of p +q -r is

int((x^(3)-1)dx)/(x^(4)sqrt(6x^(6)-4x^(3)+2))(x>0)=(sqrt(6x^(6)-4x^(3)+P))/(Qx^(R))+c" then "P+Q-R" is equal to "