Home
Class 10
MATHS
cos72^(@)-sin18^(@)=...

`cos72^(@)-sin18^(@)=` ________

Promotional Banner

Similar Questions

Explore conceptually related problems

3 cos72^(@)-4" sin"18^(@)=

cos18^@-sin18^@=

cos18 ^ (@) - sin18 ^ (@) =

3 cos 72 ^(@) -4 sin ^(3) 18^(@) = cos 36 ^(@).

If cos 18^(@) - sin 18^(@) = k sin 27^(@) , then k =

If cos18^(@)-sin18^(@)=sqrt(n)sin27^(@) , then n=

If cos18^(@)-sin18^(@)=sqrt(x)sin27^(@) , then x=

Prove that, cos18^(@)-sin18^(@)=sqrt(2)sin27^(@)

Prove that cos18^(@)-sin18^(@)=sqrt(2)sin27^(@) .

If cos18^(@)-sin18^(@)=sqrt(2)sinA . Then value of tan5A+cot5A+sin5A+cos5A is :