Home
Class 11
MATHS
If ka n dn are positive integers and sk=...

If `ka n dn` are positive integers and `s_k=1^k+2^k+3^k++n^k ,` then prove that `sum_(r=1)^m^(m+1)C_r s_r=(n+1)^(m+1)-(n+1)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If k a n d n are positive integers and s_k=1^k+2^k+3^k++n^k , then prove that sum_(r=1)^m^(m+1)C_r s_r=(n+1)^(m+1)-(n+1)dot

If k a n d n are positive integers and s_k=1^k+2^k+3^k++n^k , then prove that sum_(r=1)^m^(m+1)C_r s_r=(n+1)^(m+1)-(n+1)dot

If k and n are positive integers and s_(k)=1^(k)+2^(k)+3^(k)+...+n^(k), then prove that sum_(r=1)^(m)m+1C_(r)s_(r)=(n+1)^(m+1)-(n+1)

prove that sum_(k=1)^(n)k2^(-k)=2[1-2^(-n)-n*2^(-(n+1)))

Prove that sum_(k=1)^(n-r ) ""^(n-k)C_(r )= ""^(n)C_( r+1) .

Show that sum_(k=m)^n ^kC_r=^(n+1)C_(r+1)-^mC_(r+1)

Show that sum_(k=m)^n ^kC_r=^(n+1)C_(r+1)-^mC_(r+1)

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) is :

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) is :

If n is a positive integer and C_(k)=.^(n)C_(k) then find the value of sum_(k=1)^(n)k^(3)*((C_(k))/(C_(k-1)))^(2)