Home
Class 12
MATHS
Prove that (AB)^(-1) = B^(-1) . A^(-1) g...

Prove that `(AB)^(-1) = B^(-1) . A^(-1)` give that `A = [(2,3),(1,-4)] and B = [(1,-2),(-1,3)]`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify that (AB)^(-1) = B^(-1)A^(-1) for the matrices A and B where A=[(2,3),(1,-4)]andB=[(1,-2),(-1,3)]

Verify (AB)^(-1)= B^(-1) A^(-1) for A = [(2,1),(5,3)] and B= [(4,5),(3,4)] .

Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(2,3),(1,-4):}] and B=[{:(1,-2),(-1,3):}]

Verify (AB)^(-1)=B^(-1)A^(-1) with A=[{:(0,-3),(1,4)],B=[(-2,-3),(0,-1):}]

Find (AB)^(-1) " if "A = {:((1,2,3),(1,-2,-3)):}, B = {:((1,-1),(1,2),(1,-2)):}

Verify that (AB)^-1=B^-1A^-1 if A=[[2,3,],[1,-1,]],B=[[0,1,],[3,1,]]

Find (AB)^(-1) if A=[(3,4),(1,1)] ,B^(-1)=[(4,3),(2,1)]

Prove that AB bot CD if A = (2, 1), B = (0, -1), C= (-1, 8), D = (4, 3)

If A = {:[(1,2),(0,1)], B = [(1,-3),(2,4)] and C = [(1,-1),(-1,2)] then prove that : AB ne BA

If A = [(1,2),(3,-2),(-1,0)]and B = [(1,3,2),(4,-1,3)] then find the order of AB.