Home
Class 12
MATHS
[" 9.If "m" is the largest "x in N" such...

[" 9.If "m" is the largest "x in N" such that "],[qquad ^(x-1)C_(4)-^(x-1)C_(3)<(5)/(4)(^(x-2)P_(2))" then "m-9" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r for which S = .^(20)C_(r.).^(10)C_(0)+.^(20)C_(r-1).^(10)C_(1)+"........".^(20)C_(0).^(10)C_(r) is maximum can not be

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r for which S = .^(20)C_(r.).^(10)C_(0)+.^(20)C_(r-1).^(10)C_(1)+"........".^(20)C_(0).^(10)C_(r) is maximum can not be

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

If C_(n) is the coefficient of x^(n) in the expansion of (1+x)^(n) then C_(1)+2. C_(2)+3. C_(3)+..+n. C_(n)

Prove that : If n is a positive integer and x is any nonzero real number, then prove that C_(0)+C_(1)(x)/(2)+C_(2).(x^(2))/(3)+C_(3).(x^(3))/(4)+….+C_(n).(x^(n))/(n+1)=((1+x)^(n+1)-1)/((n+1)x)

The coefficient of x^(4) in the expansion of (1+x+x^(2)+x^(3))^(n) is *^(n)C_(4)+^(n)C_(2)+^(n)C_(1)xx^(n)C_(2)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

If n is a positive integer then using the indentiy (1+x)^(n)=(1+x)^(3)(1+x)^(n-3) , prove that ""^(n)C_(r)=""^(n-2)C_(r)+3*""^(n-3)C_(r-1)*""^(n-3)C_(r-2)+""^(n-3)C_(r-3)