Home
Class 12
MATHS
If A = [(-2),(4),(5)] , B = [1 ,3, -6], ...

If `A = [(-2),(4),(5)] , B = [1 ,3, -6]`, verify that `(AB)' B' A'`.

Text Solution

Verified by Experts

The correct Answer is:
(AB)' = B' A'
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • II PUC TOPPER ANSWERS MARCH-2016

    OSWAAL PUBLICATION|Exercise PART - E|2 Videos
  • II PUC TOPPER ANSWERS MARCH-2016

    OSWAAL PUBLICATION|Exercise PART - C|14 Videos
  • II PUC MARCH-2016

    OSWAAL PUBLICATION|Exercise PART - E|2 Videos
  • II PUC TOPPER'S ANSWERS MARCH (2017)

    OSWAAL PUBLICATION|Exercise PART - E Answer any one question :|4 Videos

Similar Questions

Explore conceptually related problems

If A=[(-2),(4),(5)]andB=[(1,3,-6)], verify that (AB)'=B'A' .

If A=[(-2),(4),(5)],B=[(1,2,-3)] , verify that (AB)'=B'A' .

If A = [{:(-2),(4),(5):}] and B = [1, 3-6], verify that (AB)^(1) = B^(1) A^(1)

If A=[{:(,1),(,-4),(,3):}], B=[-1,2,1] , verify that (AB)'=B'A'

If A = [(4,-1),(0,3)], B = [(1,2),(-1,3)] and C = [(1, -2),(3,5)] verify that A(BC) = (AB)C .

Solve the following equations by matrix method. Let A = [(3,7),(2,5)] and B = [(6,8),(7,9)] verify that (AB)^(-1) = B^(-1)A^(-1) .

If A=[[1],[4],[5]] and B=[[1,3,6]] verify that (AB)^(‘)=B^(‘)A^(‘) .

If A=[(-1,2),(2,3)],B=[(1,-3),(-3,4)] verify that AB-BA is a skew symmetric matrix and AB+BA is symmetric matrix

If A=[{:(0), (1), (2):}], B=[1" "5" "7] Verify that (AB)^(1)=B^(1)A^(1) .

If A= [[1],[-4],[3]] and B= [-1, 2,1] verify that (AB)^(1)= B^(1)A^(1)