Home
Class 11
MATHS
A right angle is divided into three posi...

A right angle is divided into three positive parts `alpha,betaa n dgammadot` Prove that for all possible divisions `t a nalpha+tanbeta+tangamma>1+tanalphatanbetatangammadot`

Promotional Banner

Similar Questions

Explore conceptually related problems

A right angle is divided into three positive parts alpha,beta and gamma. Prove that for all possible divisions tan alpha+tan beta+tan gamma>1+tan alpha tan beta tan gamma

If a right angle be divided into three parts alpha, beta and gamma , prove that cot alpha = (tan beta + tan gamma)/(1-tan beta tan gamma) .

If a right angle be divided into three parts alpha,beta and gamma, prove that cot alpha=(tan beta+tan gamma)/(1-tan beta tan gamma)

If a right angle be divided into three parts alpha,beta and gamma, prove that cot alpha=(tan beta+tan gamma)/(1-tan beta tan gamma)

Let alpha,betaa n dgamma be some angles in the first quadrant satisfying tan(alpha+beta)=(15)/8a n dcos e cgamma=(17)/8, then which of the following hold(s) good? (a) alpha+beta+gamma=pi (b) cotalpha+cotbeta+cotgamma=cotalphacotbetacotgamma (c) tanalpha+tanbeta+tangamma=tanalphatanbetatangamma (d) tanalphatanbeta+tanbetatangamma+tangammatanalpha=1

Let alpha,betaa n dgamma be some angles in the first quadrant satisfying tan(alpha+beta)=(15)/8a n dcos e cgamma=(17)/8, then which of the following hold(s) good? (a) alpha+beta+gamma=pi (b) cotalpha+cotbeta+cotgamma=cotalphacotbetacotgamma (c) tanalpha+tanbeta+tangamma=tanalphatanbetatangamma (d) tanalphatanbeta+tanbetatangamma+tangammatanalpha=1

Let alpha,betaa n dgamma be some angles in the first quadrant satisfying tan(alpha+beta)=(15)/8a n dcos e cgamma=(17)/8, then which of the following hold(s) good? (a) alpha+beta+gamma=pi (b)cotalpha+tanbeta+tangamma=tanalphatanbetatangamma (c)tanalpha+tanbeta+tangamma=tanalphatanbetatangamma (d)tanalphatanbeta+tanbetatangamma+tangammatanalpha=1

Let alpha,betaa n dgamma be some angles in the first quadrant satisfying tan(alpha+beta)=(15)/8a n dcos e cgamma=(17)/8, then which of the following hold(s) good? alpha+beta+gamma=pi cotalpha+tanbeta+tangamma=tanalphatanbetatangamma tanalpha+tanbeta+tangamma=tanalphatanbetatangamma tanalphatanbeta+tanbetatangamma+tangammatanalpha=1

If the angle of elevation of a cloud from a point h metres above a lake is alpha and the angle of depression of its reflection in the take is beta , prove that the height of the cloud is (h(tanbeta+t a nalpha))/(tanbeta-t a nalpha)

If the angle of elevation of a cloud from a point h metres above a lake is alpha and the angle of depression of its reflection in the lake is beta , prove that the height of the cloud is (h(tanbeta+t a nalpha))/(tanbeta-t a nalpha)