Home
Class 10
MATHS
" If "x^(y)=e^(x-y)," then show that "(d...

" If "x^(y)=e^(x-y)," then show that "(dy)/(dx)=(log x)/({log(xe)}^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y), show that (dy)/(dx)=(log x)/({log(xe)}^(2))

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

IF x^y=e^(x-y) then show that (dy)/(dx)=(logx)/[log(xe)]^2 .

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(ln x)/((1+ln x)^(2))

If x ^(y) = e ^( x -y) , then show that (dy)/(dx) = (log x )/( (1 + log x ) ^(2))